Decreasing Subsequences in Permutations and Wilf Equivalence for Involutions
نویسنده
چکیده
In a recent paper, Backelin, West and Xin describe a map φ∗ that recursively replaces all occurrences of the pattern k . . . 21 in a permutation σ by occurrences of the pattern (k − 1) . . . 21k. The resulting permutation φ∗(σ ) contains no decreasing subsequence of length k. We prove that, rather unexpectedly, the map φ∗ commutes with taking the inverse of a permutation. In the BWX paper, the definition of φ∗ is actually extended to full rook placements on a Ferrers board (the permutations correspond to square boards), and the construction of the map φ∗ is the key step in proving the following result. Let T be a set of patterns starting with the prefix 12 . . . k. Let T ′ be the set of patterns obtained by replacing this prefix by k . . . 21 in every pattern of T . Then for all n, the number of permutations of the symmetric group Sn that avoid T equals the number of permutations of Sn that avoid T ′. Our commutation result, generalized to Ferrers boards, implies that the number of involutions of Sn that avoid T is equal to the number of involutions of Sn avoiding T ′, as recently conjectured by Jaggard.
منابع مشابه
Enumerating rc-Invariant Permutations with No Long Decreasing Subsequences∗
We use the Robinson-Schensted-Knuth correspondence and Schützenberger’s evacuation of standard tableaux to enumerate permutations and involutions which are invariant under the reverse-complement map and which have no decreasing subsequences of length k. These enumerations are in terms of numbers of permutations with no decreasing subsequences of length approximately k2 ; we use known results co...
متن کاملNew Equivalences for Pattern Avoidance for Involutions
We complete the Wilf classification of signed patterns of length 5 for both signed permutations and signed involutions. New general equivalences of patterns are given which prove Jaggard’s conjectures concerning involutions in the symmetric group avoiding certain patterns of length 5 and 6. In this way, we also complete the Wilf classification of S5, S6, and S7 for both permutations and involut...
متن کاملNew Equivalences for Pattern Avoiding Involutions
We complete the Wilf classification of signed patterns of length 5 for both signed permutations and signed involutions. New general equivalences of patterns are given which prove Jaggard’s conjectures concerning involutions in the symmetric group avoiding certain patterns of length 5 and 6. In this way, we also complete the Wilf classification of S5, S6, and S7 for involutions.
متن کاملInvolutions Avoiding the Class of Permutations
An involution π is said to be τ -avoiding if it does not contain any subsequence having all the same pairwise comparisons as τ . This paper concerns the enumeration of involutions which avoid a set Ak of subsequences increasing both in number and in length at the same time. Let Ak be the set of all the permutations 12π3 . . . πk of length k. For k = 3 the only subsequence in Ak is 123 and the 1...
متن کاملOn Wilf Equivalence for Alternating Permutations
In this paper, we obtain several new classes of Wilf-equivalent patterns for alternating permutations. In particular, we prove that for any nonempty pattern τ , the patterns 12 . . . k ⊕ τ and k . . . 21 ⊕ τ are Wilf-equivalent for alternating permutations, paralleling a result of Backelin, West, and Xin for Wilf-equivalence for
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006